Homo-Polymerization of 1-Hexene Catalysed by O^N^N (Salicylaldimine)Iron(III) Pre-Catalysts to Branched Poly(1-hexene)
نویسندگان
چکیده
Five new iron(III) 1-hexene polymerisation catalysts were prepared from the reactions of 2,4-di-tert-butyl-6-(2-(1H-imidazol-4-yl)ethylimino)methylphenol (L1), or 4-tert-butyl-6-(2-(1Himidazol-4-yl)ethylimino)methylphenol (L2) or 2,4-di-tert-butyl-6-[(2-pyridin-2-yl-ethylimino)methyl-phenol (L3) with anhydrous iron(II) halides to form [FeCl2(L1)] (1), [FeBr2(L1)] (2), [FeI2(L1)] (3), [FeBr2(L2)] (4) and [FeCl2(L3)] (5). All the iron(III) complexes 1–5 were activated with EtAlCl2 to produce active catalysts for the polymerisation of 1-hexene to low molecular weight poly(1-hexene) (Mn = 1021–1084 Da) and very narrow polydispersity indices (1.19–1.24). 1H and 13C{1H} NMR analysis showed the polymers are branched with methyl, butyl and longer chain branches. The longer chain branches are dominant indicating that 2,1-insertion of monomer is favoured over 1,2-insertion in the polymerisation reaction.
منابع مشابه
Halogen substituted iron(III) di(imino)pyridine complexes as catalysts for 1- pentene/1-hexene co-oligomerization reactions
Nine different bis(arylimino)pyridine complexes of Fe(III) with different halide substituents (F, Cl, Br, I) at different positions of the iminophenyl group of the ligand have been synthesized, characterized and applied for homogeneous 1-pentene and 1-hexene oligomerization and co-oligomerization reactions after activation with methylaluminoxane (MAO). The best activity in 1-hexene oligomerizat...
متن کامل[ONNO]-type amine bis(phenolate)-based vanadium catalysts for ethylene homo- and copolymerization*
The synthesis and solution and solid-state structural characterization of a family of amine bis(phenolate) [ONNO]-vanadium complexes is reviewed. These compounds have oxi dation states ranging from vanadium(II) to vanadium(V), and were evaluated as olefin polymerization catalysts. In association with EtAlCl2 cocatalyst, we studied the homo polymerization of ethylene, propene, and 1-hexene, as w...
متن کاملActive site nature of magnesium dichloride-supported titanocene catalysts in olefin polymerization
Heterogeneous Ziegler-Natta and homogeneous metallocene catalysts exhibit greatly different active sitenature in olefin polymerization. In our previous study, it was reported that MgCl2-supported titanocenecatalysts can generate both Ziegler-Natta-type and metallocene-type active sites according to the type of activators.The dual active site nature of the supported titanocene catalysts was furt...
متن کامل“Living” Polymerization of Ethylene and 1-Hexene Using Novel Binuclear Pd–Diimine Catalysts
We report the synthesis of two novel binuclear Pd–diimine catalysts and their unique behaviors in initiating “living” polymerization of ethylene and 1-hexene. These two binuclear catalysts, [(NˆN)Pd(CH2)3C(O)O(CH2)mO(O)C(CH2)3Pd(NˆN)](SbF6)2 (3a: m = 4, 3b: m = 6) (NˆN≡ArN=C(Me)–(Me)C=NAr, Ar≡2,6–(iPr)2C6H3), were synthesized by simply reacting [(NˆN)Pd(CH3)(N≡CMe)]SbF6 (1) with diacrylates, 1,...
متن کاملImido-modified SiO2-supported Ti/Mg Ziegler-Natta catalysts for ethylene polymerization and ethylene/1-hexene copolymerization
A novel imido-modified SiO2-supported Ti/Mg Ziegler-Natta catalyst for ethylene and ethylene/1-hexene polymerization is investigated. The catalyst is prepared by modification of (SiO2/MgO/MgCl2)TiClx Ziegler-Natta catalysts via supporting vanadium species followed by reaction with p-tolyl isocyanate as imido agents, to get the merits from both the SiO2-supported imido vanadium catalyst and the ...
متن کامل